Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 421
Filtrar
1.
Environ Pollut ; 349: 123951, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604305

RESUMO

Phosphorus is one of the important factors to successfully establish the microalgal-bacterial symbiosis (MABS) system. The migration and transformation of phosphorus can occur in various ways, and the effects of phosphate on the MABS system facing environmental impacts like heavy metal stress are often ignored. This study investigated the roles of phosphate on the response of the MABS system to zinc ion (Zn2+). The results showed that the pollutant removal effect in the MABS system was significantly reduced, and microbial growth and activity were inhibited with the presence of Zn2+. When phosphate and Zn2+ coexisted, the inhibition effects of pollutants removal and microbial growth rate were mitigated compared to that of only with the presence of Zn2+, with the increasing rates of 28.3% for total nitrogen removal, 48.9% for chemical oxygen demand removal, 78.3% for chlorophyll-a concentration, and 13.3% for volatile suspended solids concentration. When phosphate was subsequently supplemented in the MABS system after adding Zn2+, both pollutants removal efficiency and microbial growth and activity were not recovered. Thus, the inhibition effect of Zn2+ on the MABS system was irreversible. Further analysis showed that Zn2+ preferentially combined with phosphate could form chemical precipitate, which reduced the fixation of MABS system for Zn2+ through extracellular adsorption and intracellular uptake. Under Zn2+ stress, the succession of microbial communities occurred, and Parachlorella was more tolerant to Zn2+. This study revealed the comprehensive response mechanism of the co-effects of phosphate and Zn2+ on the MABS system, and provided some insights for the MABS system treating wastewater containing heavy metals, as well as migration and transformation of heavy metals in aquatic ecosystems.

2.
Adv Sci (Weinh) ; : e2400345, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38477444

RESUMO

Efferocytosis, an intrinsic regulatory mechanism to eliminate apoptotic cells, will be suppressed due to the delayed apoptosis process in aging-related diseases, such as osteoarthritis (OA). In this study, cartilage lesion-localized hydrogel microspheres are developed to remodel the in situ efferocytosis to reverse cartilage senescence and recruit endogenous stem cells to accelerate cartilage repair. Specifically, aldehyde- and methacrylic anhydride (MA)-modified hyaluronic acid hydrogel microspheres (AHM), loaded with pro-apoptotic liposomes (liposomes encapsulating ABT263, A-Lipo) and PDGF-BB, namely A-Lipo/PAHM, are prepared by microfluidic and photo-cross-linking techniques. By a degraded porcine cartilage explant OA model, the in situ cartilage lesion location experiment illustrated that aldehyde-functionalized microspheres promote affinity for degraded cartilage. In vitro data showed that A-Lipo induced apoptosis of senescent chondrocytes (Sn-chondrocytes), which can then be phagocytosed by the efferocytosis of macrophages, and remodeling efferocytosis facilitated the protection of normal chondrocytes and maintained the chondrogenic differentiation capacity of MSCs. In vivo experiments confirmed that hydrogel microspheres localized to cartilage lesion reversed cartilage senescence and promoted cartilage repair in OA. It is believed this in situ efferocytosis remodeling strategy can be of great significance for tissue regeneration in aging-related diseases.

3.
Int Immunopharmacol ; 131: 111850, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38479157

RESUMO

Synovial angiogenesis is a key player in the development of rheumatoid arthritis (RA), and anti-angiogenic therapy is considered a promising approach for treating RA. CPD-002 has demonstrated efficacy in suppressing tumor angiogenesis as a VEGFR2 inhibitor, but its specific impacts on RA synovial angiogenesis and possible anti-RA effects need further study. We examined the influences of CPD-002 on the migration and invasion of human umbilical vein endothelial cells (HUVECs) and its impacts on HUVECs' tube formation and vessel sprouting ex vivo. The therapeutic potential of CPD-002 in adjuvant-induced arthritis (AIA) rats and its suppression of synovial angiogenesis were examined. The involvement of the VEGFR2/PI3K/AKT pathway was assessed both in HUVECs and AIA rat synovium. Here, CPD-002 inhibited the migration and invasion of VEGF-stimulated HUVECs, decreased their chemotactic response to RA fibroblast-like synoviocyte-released chemoattractants, and exhibited anti-angiogenic effects in vitro and ex vivo. CPD-002's targeting of VEGFR2 was confirmed with molecular docking and cellular thermal shift assays, supported by the abolishment of CPD-002's effects upon using VEGFR2 siRNA. CPD-002 relieved paw swelling, arthritis index, joint damage, and synovial angiogenesis, indicating its anti-arthritic and anti-angiogenic effects in AIA rats. Moreover, the anti-inflammatory effects in vivo and in vitro of CPD-002 contributed to its anti-angiogenic effects. Mechanistically, CPD-002 hindered the activation of VEGFR2/PI3K/AKT pathway in VEGF-induced HUVECs and AIA rat synovium, as evidenced by reduced p-VEGFR2, p-PI3K, and p-AKT protein levels alongside elevated PTEN protein levels. Totally, CPD-002 showed anti-rheumatoid effects via attenuating angiogenesis through the inhibition of the VEGFR2/PI3K/AKT pathway.


Assuntos
Artrite Reumatoide , Proteínas Proto-Oncogênicas c-akt , Ratos , Humanos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , 60489 , Simulação de Acoplamento Molecular , Movimento Celular , Transdução de Sinais , Artrite Reumatoide/metabolismo , Células Endoteliais da Veia Umbilical Humana , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Proliferação de Células
4.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542890

RESUMO

An unparalleled copper(I)-catalyzed synthesis of 1,3,4-oxadiazoles from tertiary amines in one step has been described. The one-pot reactions involving (N-isocyanimine)triphenylphosphorane, tertiary amines, and carboxylic acids resulted in the formation of 1,3,4-oxadiazoles in moderate to good yields through a consecutive oxidative Ugi/aza-Wittig reaction, enabling the direct functionalization of sp3 C-H bonds adjacent to the nitrogen atom. This method offered several notable advantages, including ligands-free, exceptional productivity and a high functional group tolerance. The preliminary biological evaluation demonstrated that compound 4f inhibited hepatoma cells efficiently, suggesting potentially broad applications of the approach for synthesis and medicinal chemistry.


Assuntos
Cobre , Compostos Organofosforados , Oxidiazóis , Cobre/química , Oxidiazóis/química , Aminas/química , Catálise , Estresse Oxidativo
5.
Food Chem ; 446: 138881, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38428086

RESUMO

Pasteurization is necessary during the production of liquid egg whites (LEW), but the thermal effects in pasteurization could cause an unavoidable loss of foaming properties of LEW. This study intended to investigate the mechanism of pasteurization processing affects the foam performance of LEW. The foaming capacity (FC) of LEW deteriorated significantly (ΔFCmax = 72.33 %) and foaming stability (FS) increased slightly (ΔFSmax = 3.64 %) under different temperature-time combinations of pasteurization conditions (P < 0.05). The increased turbidity and the decreased solubility together with the decreased absolute value of Zeta potential indicated the generation of thermally induced aggregates and the instability of the protein particles, Rheological characterization demonstrated improved viscoelasticity in pasteurization liquid egg whites (PLEW), explaining enhanced FS. The study revealed that loss in foaming properties of PLEW resulted from thermal-induced protein structural changes and aggregation, particularly affecting FC. This provided a theoretical reference for the production and processing of LEW products.


Assuntos
Clara de Ovo , Pasteurização , Pasteurização/métodos , Clara de Ovo/química , Agregados Proteicos , Ovos , Solubilidade
6.
Phytomedicine ; 128: 155512, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38460357

RESUMO

BACKGROUND: The overproliferation of fibroblast-like synoviocytes (FLS) contributes to synovial hyperplasia, a pivotal pathological feature of rheumatoid arthritis (RA). Shikonin (SKN), the active compound from Lithospermum erythrorhizon, exerts anti-RA effects by diverse means. However, further research is needed to confirm SKN's in vitro and in vivo anti-proliferative functions and reveal the underlying specific molecular mechanisms. PURPOSE: This study revealed SKN's anti-proliferative effects by inducing both apoptosis and autophagic cell death in RA FLS and adjuvant-induced arthritis (AIA) rat synovium, with involvement of regulating the AMPK/mTOR/ULK-1 pathway. METHODS: SKN's influences on RA FLS were assessed for proliferation, apoptosis, and autophagy with immunofluorescence staining (Ki67, LC3B, P62), EdU incorporation assay, staining assays of Hoechst, Annexin V-FITC/PI, and JC-1, transmission electron microscopy, mCherry-GFP-LC3B puncta assay, and western blot. In AIA rats, SKN's anti-arthritic effects were assessed, and its impacts on synovial proliferation, apoptosis, and autophagy were studied using Ki67 immunohistochemistry, TUNEL, and western blot. The involvement of AMPK/mTOR/ULK-1 pathway was examined via western blot. RESULTS: SKN suppressed RA FLS proliferation with reduced cell viability and decreased Ki67-positive and EdU-positive cells. SKN promoted RA FLS apoptosis, as evidenced by apoptotic nuclear fragmentation, increased Annexin V-FITC/PI-stained cells, reduced mitochondrial potential, elevated Bax/Bcl-2 ratio, and increased cleaved-caspase 3 and cleaved-PARP protein levels. SKN also enhanced RA FLS autophagy, featuring increased LC3B, reduced P62, autophagosome formation, and activated autophagic flux. Autophagy inhibition by 3-MA attenuated SKN's anti-proliferative roles, implying that SKN-induced autophagy contributes to cell death. In vivo, SKN mitigated the severity of rat AIA while also reducing Ki67 expression, inducing apoptosis, and enhancing autophagy within AIA rat synovium. Mechanistically, SKN modulated the AMPK/mTOR/ULK-1 pathway in RA FLS and AIA rat synovium, as shown by elevated P-AMPK and P-ULK-1 expression and decreased P-mTOR expression. This regulation was supported by the reversal of SKN's in vitro and in vivo effects upon co-administration with the AMPK inhibitor compound C. CONCLUSION: SKN exerted in vitro and in vivo anti-proliferative properties by inducing apoptosis and autophagic cell death via modulating the AMPK/mTOR/ULK-1 pathway. Our study revealed novel molecular mechanisms underlying SKN's anti-RA effects.

7.
Ying Yong Sheng Tai Xue Bao ; 35(2): 289-297, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38523085

RESUMO

To explore potential responses of ecosystem carbon density to changes of community structure during natural regeneration of woody plants, we analyzed the relationships between ecosystem carbon density and its components, tree species diversity, structural diversity (CVDBH) and spatial structure parameters (mingling, aggregation, dominance, crowding) of Cunninghamia lanceolata forests with different sprouting densities (1154, 847 and 465 individuals·hm-2) at the early stage of succession in Baishanzu National Park. The results showed that tree species diversity (species richness index and Shannon diversity index) increased with the decrease of sprouting density of C. lanceolata. Among the stand structural parameters, CVDBH, stand density, and mingling increased with the decrease of sprouting density of C. lanceolata. The stand distribution pattern of different C. lanceolata densities was uniform, with sub-dominant stand growth status and relatively dense status. The carbon density of tree layer under high, medium, and low sprouting densities of C. lanceolata were 57.56, 56.12 and 46.54 t·hm-2, soil carbon density were 104.35, 122.71 and 142.00 t·hm-2, and the total carbon density of ecosystem were 164.59, 182.41 and 190.13 t·hm-2, respectively. There was little variation in carbon density of understory layer and litter layer among different treatments. The carbon density distribution characteristics of different C. lanceolata densities were following the order of soil layer (63.4%-74.7%) > tree layer (24.5%-35.0%) > understory layer and litter layer (0.8%-2.0%). The results of variance partitioning analysis indicated that the change of tree layer carbon density was mainly influenced by stand structure diversity, soil layer carbon density was influenced by both tree species diversity and stand structure diversity, while ecosystem carbon density was mainly influenced by tree species diversity. Stand spatial structure parameters had a relatively little effect on ecosystem carbon density and its components. The sprouting density of C. lanceolata significantly affected ecosystem carbon accumulation during the conversion from C. lanceolata plantations to natural forests. A lower remaining density of C. lanceolata (about 500 individuals·hm-2) was more conducive to forest carbon sequestration.


Assuntos
Cunninghamia , Ecossistema , Humanos , Carbono/química , Florestas , Árvores , Solo/química , China
8.
Mol Phylogenet Evol ; 193: 108023, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342159

RESUMO

The Himalaya-Hengduan Mountains (HHM), a renowned biodiversity hotspot of the world, harbors the most extensive habitats for alpine plants with extraordinary high levels of endemism. Although the general evolution pattern has been elucidated, the underlying processes driving spectacular radiations in many species-rich groups remain elusive. Corydalis DC. is widely distributed throughout the Northern Hemisphere containing more than 500 species, with high diversity in HHM and adjacent regions. Using 95 plastid genes, 3,258,640 nuclear single nucleotide polymorphisms (SNPs) and eight single-copy nuclear genes (SCNs) generated from genome skimming data, we reconstructed a robust time-calibrated phylogeny of Corydalis comprising more than 100 species that represented all subgenera and most sections. Molecular dating indicated that all main clades of Corydalis began to diverge in the Eocene, with the majority of extant species in HHM emerged from a diversification burst after the middle Miocene. Global pattern of mean divergence times indicated that species distributed in HHM were considerably younger than those in other regions, particularly for the two most species-rich clades (V and VI) of Corydalis. The early divergence and the recent diversification of Corydalis were most likely promoted by the continuous orogenesis and climate change associated with the uplift of the Qinghai-Tibetan Plateau (QTP). Our study demonstrates the effectivity of phylogenomic analyses with genome skimming data on the phylogeny of species-rich taxa, and sheds lights on how the uplift of QTP has triggered the evolutionary radiations of large plant genera in HHM and adjacent regions.


Assuntos
Corydalis , Filogenia , 60479 , Biodiversidade , Ecossistema , Plantas
9.
Mitochondrial DNA B Resour ; 9(1): 163-167, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38274855

RESUMO

Petrocosmea qinlingensis is a protected wild plant endemic in China, inhabiting low-light limestone cliffs but the complete chloroplast genome has not been reported. In this study, we first sequenced and assembled the complete chloroplast genome of P. qinlingensis. The total size of this genome was 153,865 bp, including a large single-copy (LSC) region (84,737 bp), a small single-copy (SSC) region (18,244 bp), and two inverted repeats (IRs) regions (25,442 bp). This genome encoded 111 uniquegenes, consisted of 77 protein-coding genes, four ribosomal RNA genes, and 30 transfer RNA genes. Phylogenomic analysis based on the chloroplast protein-coding genes and showed that the genus Petrocosmea was the closest relative to Raphiocarpus. Our results will support further phylogeographic, population genetic studies of this species.

10.
Toxicology ; 499: 153650, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37858774

RESUMO

BACKGROUND: Exposure to di-(2-ethylhexyl) phthalate (DEHP) can cause neurotoxicity but the mechanism is not clear. Blood brain barrier (BBB) is one of the most important tissues to protect the brain. However, whether DEHP can disrupt the BBB or not remains unclear. The objective of this study is to investigate the potential effects of subchronic DEHP exposure on BBB integrity and discuss the role of BBB in DEHP inducible neurotoxicity with an emphasis on neuroinflammatory responses. Male adult C57BL/6J mice were orally administered with vehicle or 200 or 750 mg/kg/day DEHP for 90 days. Subchronic exposure to high-dose DEHP increased water intake but decreased body weight and brain weight. The concentrations of DEHP metabolites increased in serum from all DEHP-exposed groups while increased in brain only from the high-dose group. DEHP induced neurobehavioural alterations and damaged hippocampal neurons. DEHP increased BBB permeability by Evans blue (EB) extravasation and decreased tight junction proteins (ZO-1, occludin, and claudin-5) while presenting a neuroinflammatory feature characterized by the upregulated inflammatory mediators TNF-α and the NLRP3/caspase-1/IL-1ß inflammasome pathway. Our data provide new insights into neurotoxicity caused by subchronic DEHP exposure, which is probably involved in BBB dysfunction and neuroinflammatory responses.


Assuntos
Barreira Hematoencefálica , Dietilexilftalato , Camundongos , Animais , Masculino , Dietilexilftalato/toxicidade , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Inflamação/induzido quimicamente
11.
mSystems ; 8(5): e0057323, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37787527

RESUMO

IMPORTANCE: Alterations in the intestinal environment are associated with various diseases, and FFAR4 is abundantly enriched in the intestine, where it has been shown to have the ability to regulate intestinal hormone secretion and intestinal microbiota; here, we confirmed previous reports. Meanwhile, we found that intestinal FFAR4 regulates glucagon-like peptide 1 secretion by decreasing Akkermansia muciniphila abundance and show that such change is associated with the level of glucose utilization at ZT12 in mice. Intestinal FFAR4 deficiency leads to severely impaired glucose tolerance at the ZT12 moment in mice, and Akkermansia muciniphila supplementation ameliorates the abnormal glucose utilization at the ZT12 moment caused by FFAR4 deficiency, which is very similar to the dawn phenomenon in diabetic patients. Collectively, our data suggest that intestinal Ffar4 deteriorates glucose tolerance at the daily light to dark transition by affecting Akkermansia muciniphila.


Assuntos
Microbioma Gastrointestinal , Intolerância à Glucose , Verrucomicrobia , Animais , Humanos , Camundongos , Suplementos Nutricionais , Glucose/metabolismo , Intestinos , Camundongos Knockout , Verrucomicrobia/química , Verrucomicrobia/metabolismo , Luz , Escuridão , Receptores Acoplados a Proteínas G/metabolismo , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo
12.
World J Gastrointest Surg ; 15(8): 1591-1599, 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37701686

RESUMO

Echinococcosis is a zoonotic parasitic disease caused by Escherichia larvae. It frequently involves the liver (70%-75%), followed by the lungs (15%-20%), and occasionally the brain, heart, spleen, bone, and other organs. The main pathogenic forms of human echinococcosis currently include cystic echinococcosis (CE) and alveolar echinococcosis (AE). CE is globally distributed, while the distribution of AE is generally restricted to the northern hemisphere. In China, CE accounts for 75% of all echinococcosis cases. With rapid advances in surgical techniques in recent decades, the surgical strategy for CE has changed, especially with the continuous improvement of surgical methods and the expansion of surgical contraindications. To further understand the changes in surgical treatment strategies for hepatic CE, we interpreted and analyzed the existing literature addressing the surgical treatment of hepatic CE both domestically and abroad and briefly summarized them in chronological order. This review aims to provide a deeper understanding of the progress in the surgical treatment of hepatic CE to provide clearer avenues for its clinical diagnosis and treatment.

13.
Environ Pollut ; 337: 122539, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37699452

RESUMO

Microalgal-bacterial symbiosis (MABS) system performs synergistic effect on the reduction of nutrients and carbon emissions in the water treatment process. However, antimicrobial agents are frequently detected in water, which influence the performance of MABS system. In this study, triclosan (TCS) was selected to reveal the effects and mechanisms of antimicrobial agents on MABS system. Results showed that the removal efficiencies of chemical oxygen demand, NH4+-N and total phosphorus decreased by 3.0%, 24.0% and 14.3% under TCS stress. In contrast, there were no significant decrease on the removal effect of total nitrogen. Mechanism analysis showed that both the growth rate of microorganisms and the nutrients retention capacity of extracellular polymeric substances were decreased. The intracellular accumulation for nitrogen and phosphorus was promoted due to the increased cytomembrane permeability caused by lipid peroxidation. Moreover, microalgae were dominant in MABS system with ratio between microalgae and bacteria of more than 5.49. The main genus was Parachlorella, with abundance of more than 90%. Parachlorella was highly tolerant to TCS, which might be conductive to maintain its survival. This study revealed the nutrients pathways of MABS system under TCS stress, and helped to optimize the operation of MABS system.


Assuntos
Anti-Infecciosos , Microalgas , Triclosan , Triclosan/análise , Microalgas/metabolismo , Nitrogênio/análise , Fósforo/análise , Simbiose , Bactérias/metabolismo , Biomassa
14.
J Sci Food Agric ; 103(15): 7517-7528, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37440710

RESUMO

BACKGROUND: Lipid droplets (LDs) are important multifunctional organelles responsible for lipid metabolism of postmortem muscle. However, the dynamics in their building blocks (cores and layers) and phosphorylation of lipid droplet-related proteins (LDRPs) regulating meat lipolysis remain unknown at salt-stimulated conditions. RESULTS: LDRPs extracted from cured porcine biceps femoris (1% and 3% salt) were subjected to label-free quantitative phosphoproteomic analysis and LDs morphological validation. Results indicated that 3% salt curing significantly decreased triglyceride (TG) content with increase in glycerol and decrease in LDs fluorescence compared to 1% salt curing. Comparative phosphoproteomics showed that there were significant changes in phosphorylation at 386 sites on 174 LDRPs between assayed groups (P < 0.05). These differential proteins were mainly involved in lipid and carbohydrate metabolism. Curing of 3% salt induced more site-specific phosphorylation of perilipin 1 (PLIN1, at Ser81) and adipose triglyceride lipase (ATGL, at Ser399) than 1%, whereas the phosphorylation (at Ser600) of hormone-sensitive lipase (HSL) was up-regulated. Ultrastructure imaging showed that LDs were mostly associated with mitochondria, and the average diameter of LDs decreased from 2.34 µm (1% salt) to 1.73 µm (3% salt). CONCLUSION: Phosphoproteomics unraveled salt-stimulated LDRPs phosphorylation of cured porcine meat provoked intensified lipolysis. Curing of 3% salt allowed an enhanced lipolysis than 1% by up-regulating the phosphorylation sites of LDRPs and recruited lipases. The visible splitting of LDs, together with sarcoplasmic disorganization, supported the lipolysis robustness following 3% salt curing. The finding provides optimization ideas for high-quality production of cured meat products. © 2023 Society of Chemical Industry.


Assuntos
Músculos Isquiossurais , Metabolismo dos Lipídeos , Animais , Suínos , Gotículas Lipídicas/metabolismo , Proteínas Associadas a Gotículas Lipídicas/metabolismo , Lipólise , Cloreto de Sódio/metabolismo , Biologia Computacional
15.
Immunol Res ; 71(6): 929-940, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37405561

RESUMO

The role of CD3+CD56+ natural killer T (NKT) cells and its co-signaling molecules in patients with sepsis-associated encephalopathy (SAE) is unknown. In this prospective observational cohort study, we initially recruited 260 septic patients and eventually analyzed 90 patients, of whom 57 were in the SAE group and 37 were in the non-SAE group. Compared to the non-SAE group, 28-day mortality was significantly increased in the SAE group (33.3% vs. 12.1%, p = 0.026), while the mean fluorescence intensity (MFI) of CD86 in CD3+CD56+ NKT cells was significantly lower (2065.8 (1625.5 ~ 3198.8) vs. 3117.8 (2278.1 ~ 5349), p = 0.007). Multivariate analysis showed that MFI of CD86 in NKT cells, APACHE II score, and serum albumin were independent risk factors for SAE. Furthermore, the Kaplan-Meier survival analysis indicated that the mortality rate was significantly higher in the high-risk group than in the low-risk group (χ2 = 14.779, p < 0.001). This study showed that the decreased expression of CD86 in CD3+CD56+ NKT cells is an independent risk factor of SAE; thus, a prediction model including MFI of CD86 in NKT cells, APACHE II score, and serum albumin can be constructed for diagnosing SAE and predicting prognosis.


Assuntos
Células T Matadoras Naturais , Encefalopatia Associada a Sepse , Sepse , Humanos , Encefalopatia Associada a Sepse/diagnóstico , Encefalopatia Associada a Sepse/epidemiologia , Estudos Prospectivos , Prognóstico , Albumina Sérica
16.
Int J Biol Macromol ; 246: 125711, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37414321

RESUMO

This study investigated the impact of varied pH treatments on the structural, emulsification, and interfacial adsorption properties of egg yolk. The solubility of egg yolk proteins decreased and then increased in response to pH changes, with a minimum value (41.95 %) observed at pH 5.0. The alkaline condition (pH 9.0) significantly impacted the secondary/tertiary structure of egg yolk, with the yolk solution displaying the lowest surface tension value (15.98 mN/m). Emulsion stability was found to be optimal when egg yolk was used as the stabilizer at pH 9.0, which corresponded to the more flexible diastolic structure, smaller emulsion droplets, increased viscoelasticity, and enhanced resistance to creaming. At pH 9.0, proteins exhibited a maximum solubility (90.79 %) due to their unfolded conformation, yet the protein adsorption content at the oil-water interface showed relatively low (54.21 %). At this time, electrostatic repulsion between the droplets and the spatial site barrier made by proteins that were unable to efficiently adsorb at the oil-water interface kept the emulsion stable. Moreover, it was found that different pH treatments could effectively regulate the relative adsorption contents of various protein subunits at the oil-water interface, and all proteins except livetin displayed good interfacial adsorption capacity at the oil-water interface.


Assuntos
Proteínas do Ovo , Água , Adsorção , Emulsões/química , Concentração de Íons de Hidrogênio , Proteínas do Ovo/química , Água/química , Gema de Ovo/química
18.
Materials (Basel) ; 16(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37374443

RESUMO

This study investigated the effects of a minor Zr addition (0.15 wt%) and heterogenization treatment (one-stage/two-stage) on the hot-working temperature and mechanical properties in Al-4.9Cu-1.2Mg-0.9Mn alloy. The results indicated that the eutectic phases (α-Al + θ-Al2Cu + S-Al2CuMg) dissolved after heterogenization, retaining θ-Al2Cu and τ1-Al29Cu4Mn6 phases, while the onset melting temperature increased to approximately 17 °C. A change in the onset melting temperature and evolution of the microstructure is used to assess an improvement in hot-working behavior. With the minor Zr addition, the alloy exhibited enhanced mechanical properties due to grain growth inhibition. Zr-added alloys show 490 ± 3 MPa ultimate tensile strength and 77.5 ± 0.7 HRB hardness after T4 tempering, compared to 460 ± 2.2 MPa and 73.7 ± 0.4 HRB for un-added alloys. Additionally, combining minor Zr addition and two-stage heterogenization resulted in finer Al3Zr dispersoids. Two-stage heterogenized alloys had an average Al3Zr size of 15 ± 5 nm, while one-stage heterogenized alloys had an average size of 25 ± 8 nm. A partial decrease in the mechanical properties of the Zr-free alloy was observed after two-stage heterogenization. The one-stage heterogenized alloy had 75.4 ± 0.4 HRB hardness after being T4-tempered, whereas the two-stage heterogenized alloy had 73.7 ± 0.4 HRB hardness after being T4-tempered.

19.
Mater Today Bio ; 20: 100639, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37197743

RESUMO

Neural tissue engineering (NTE) has made remarkable strides in recent years and holds great promise for treating several devastating neurological disorders. Selecting optimal scaffolding material is crucial for NET design strategies that enable neural and non-neural cell differentiation and axonal growth. Collagen is extensively employed in NTE applications due to the inherent resistance of the nervous system against regeneration, functionalized with neurotrophic factors, antagonists of neural growth inhibitors, and other neural growth-promoting agents. Recent advancements in integrating collagen with manufacturing strategies, such as scaffolding, electrospinning, and 3D bioprinting, provide localized trophic support, guide cell alignment, and protect neural cells from immune activity. This review categorises and analyses collagen-based processing techniques investigated for neural-specific applications, highlighting their strengths and weaknesses in repair, regeneration, and recovery. We also evaluate the potential prospects and challenges of using collagen-based biomaterials in NTE. Overall, this review offers a comprehensive and systematic framework for the rational evaluation and applications of collagen in NTE.

20.
Int Orthop ; 47(8): 1963-1974, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36943456

RESUMO

PURPOSE: To evaluate the safety and efficacy of platelet-rich plasma (PRP) intra-articular injective treatments for ankle osteoarthritis (OA). METHODS: A systematic literature search was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines in PubMed, Scopus, Embase, Google Scholar, and the Cochrane library until May 2022. Both randomized and non-randomized studies were included with the assessment of the risk of bias. We recorded the participant's age, gender, type of PRP, injection volume, the kit used, and activating agent. We subsequently assessed the short-term and long-term efficacy of PRP using the functional scores and visual analog scale (VAS). RESULTS: We included four studies with a total of 127 patients, with a mean age of 56.1 years. 47.2% were male (60/127), according to eligibility criteria. There were three cohort studies and one randomized controlled trial (RCT) study, and no study reported severe adverse events. All included studies used the Leukocyte-poor PRP. Short-term follow-up results suggested significant improvement of the American Orthopaedic Foot and Ankle Society (AOFAS) score in the PRP injection group compared to the control group (n = 87 patients; MD: 6.94 [95% CI: 3.59, 10.29]; P < 0.01). Consistently, there was a statistical difference in AOFAS score between PRP injection and control groups in the final follow-up (≥ 6 months) (n = 87 patients; MD: 9.63 [95% CI: 6.31, 12.94]; P < 0.01). Furthermore, we found a significant reduction in VAS scores in the PRP groups at both the short-term follow-up (n = 59 patients; MD, - 1.90 [95% CI, - 2.54, - 1.26]; P < 0.01) and the ≥ six months follow-up (n = 79 patients; MD, - 3.07 [95% CI, - 5.08, - 1.05]; P < 0.01). The improvement of AOFAS and VAS scores at ≥ six months follow-up reached the minimal clinically important difference (MCID). Nevertheless, the treatment effect of AOFAS and VAS scores offered by PRP at short-term follow-up did not exceed the MCID. Substantial heterogeneity was reported at the ≥ six months follow-up in VAS scores (I2: 93%, P < 0.01). CONCLUSION: This meta-analysis supports the safety of PRP intra-articular injection for ankle OA. The improvements of AOFAS and VAS scores in the PRP group at short-term follow-up do not exceed the MCID to be clinically significant. PRP injection provides significant improvement of AOFAS score and reduced pain at ≥ six months follow-up. The efficacy of PRP should be interpreted with caution regarding the high heterogeneity and the scarcity of available literature, which urges large-scale RCTs with longer follow-up to confirm the potential efficacy of PRP injection for ankle OA.


Assuntos
Osteoartrite do Joelho , Osteoartrite , Plasma Rico em Plaquetas , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Tornozelo , Osteoartrite/terapia , Dor , Injeções Intra-Articulares , Resultado do Tratamento , Ácido Hialurônico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...